metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

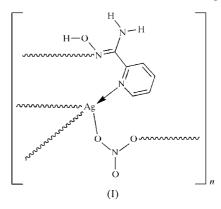
ISSN 0108-2701

Poly[μ_2 -(*N*-hydroxypyridine-2-carboxamidine)- μ_2 -nitrato-silver(I)]

Ai-Li Cui, Peng Han, Hui-Juan Yang, Ru-Ji Wang and Hui-Zhong Kou*

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China Correspondence e-mail: kouhz@mail.tsinghua.edu.cn

Received 24 September 2007 Accepted 17 October 2007 Online 14 November 2007


In the title complex, $[Ag(NO_3)(C_6H_7N_3O)]_n$ or $[Ag(NO_3)(pyaoxH_2)]$ (pyaoxH₂ is *N*-hydroxypyridine-2-carboxamidine), the Ag⁺ ion is bridged by the pyaoxH₂ ligands and nitrate anions, giving rise to a two-dimensional molecular structure. Each pyaoxH₂ ligand coordinates to two Ag⁺ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH₂ groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag⁺ ions. The Ag···Ag separation *via* the pyaoxH₂ bridge is 2.869 (1) Å, markedly shorter than that of 6.452 (1) Å *via* the nitrate bridge. The two-dimensional structure is fishscale-like, and can be described as pyaoxH₂-bridged Ag₂ nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three-dimensional network.

Comment

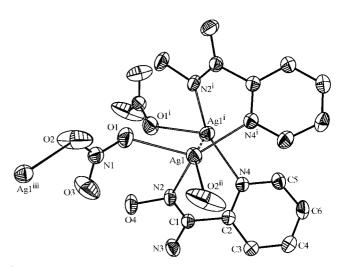
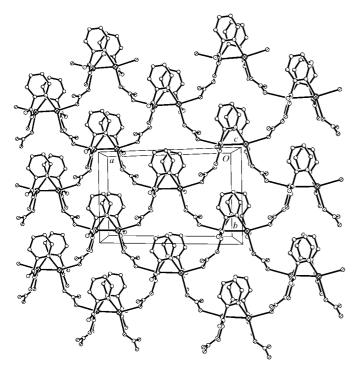

N-Hydroxypyridine-2-carboxamidine (pyaoxH₂) is structurally similar to pyridine-2-carbaldehyde oxime (paoH), which has been widely studied as a bridging ligand to construct polynuclear species. Such compounds have been found to show interesting magnetic properties and have therefore attracted much interest in recent years (Chaudhuri, 2003; Milios et al., 2006). However, pyaoxH₂ has received much less attention, and only a few mononuclear complexes have been structurally characterized, more than ten years ago (Näsäkkälä et al., 1989; Pearse, Raithby, Hay & Lewis, 1989; Pearse, Raithby & Lewis, 1989; Werner et al., 1996; Orama & Saarinen, 1996). The coordination chemistry of pyaoxH₂ awaits further elucidation. It is worth mentioning that special interest has been devoted to the oxime-Ag^I compounds with hydrogen-bonded supramolecular architectures (Aakeröy et al., 1998). In the present paper, we report the novel twodimensional complex [Ag(NO₃)(pyaoxH₂)], (I), which exhibits a three-dimensional hydrogen-bonded architecture.

Fig. 1 shows the environment of Ag1, coordinated by two N atoms from two $pyaoxH_2$ ligands and two O atoms from two

nitrate anions. The Ag-N/O bond distances are in the range 2.274 (1)–2.531 (5) Å (Table 1), with the Ag-N bonds longer than the Ag-O bonds. The coordination configuration is distorted tetrahedral. The deviation of atom Ag1 from the

coordination plane defined by atoms N2, O1 and N4ⁱ [symmetry code: (i) -x + 1, y, $-z + \frac{1}{2}$] is 0.284 (1) Å, showing significant distortion toward trigonal-bipyrimidal geometry, possibly as a result of the weak Ag···Ag contact [2.869 (1) Å]. The pyaoxH₂ ligand coordinates two Ag ions via the pyridyl and carboxamidine N atoms; therefore, the pyridine and the carboxamidine groups are not coplanar in order to avoid steric hindrance. Interestingly, the hydroxy O atoms are not involved in coordination. The N-O bond distance is 1.414 (2) Å, similar to that in mononuclear $Zn^{\rm II}$ or $Cu^{\rm II}$ complexes (Näsäkkälä et al., 1989; Pearse, Raithby, Hay & Lewis, 1989; Pearse, Raithby & Lewis, 1989; Werner et al., 1996; Orama & Saarinen, 1996). The dimeric Ag^I units bridged by one pyaoxH₂ ligand are related by a twofold axis and are further linked by nitrate anions, giving rise to a two-dimensional layer structure (Fig. 2). Two O atoms of each nitrate anion are involved in coordination. The layer is fishscale-like, and each scale consists of six Ag atoms. Within each layer, atom H4A


Figure 1

A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.]

parameters constrained

attached to hydroxy atom O4 interacts with the nonbridging atom O3 of the nitrate anion (Table 2).

Alternate fishscale layers have the opposite sense. The Ag¹ ions are nearly coplanar within a layer, with the pyaoxH₂ ligands situated at two sides of the Ag layer. Two amide H atoms (H3A and H3B) of each pyaoxH₂ ligand are, respectively, connected to atoms O3^{iv} and O1^v [symmetry codes: (iv) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1;$ (v) $x, -y + 1, z + \frac{1}{2}$] of two nitrate anions in the adjacent layer. A weak interlayer $C-H \cdots O$ contact further links the neighbouring layers, giving rise to a threedimensional supramolecular network.

Figure 2

The layer structure in (I).

Experimental

The pyaoxH₂ ligand was prepared according to a literature method (Bernasek, 1957). Compound (I) was prepared in the dark by slow evaporation of an acetonitrile solution (10 ml) containing AgNO₃ (17.0 mg, 0.1 mmol) and pyaoxH₂ (13.7 mg, 0.1 mmol). After 3 d, colourless crystals were obtained (yield 60%).

Crystal data

 $[Ag(NO_3)(C_6H_7N_3O)]$ $M_r = 307.03$ Monoclinic, C2/c a = 15.0911 (14) Åb = 8.8890 (8) Å c = 16.0727 (15) Å $\beta = 116.536 \ (2)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min} = 0.623, \ T_{\rm max} = 0.788$

6244 measured reflections 2110 independent reflections 1777 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.022$

V = 1928.9 (3) Å³

Mo $K\alpha$ radiation

0.25 \times 0.20 \times 0.12 mm

 $\mu = 2.09 \text{ mm}^{-1}$

T = 293 (2) K

Z = 8

Refinement

-	
$R[F^2 > 2\sigma(F^2)] = 0.032$	10 restraints
$wR(F^2) = 0.065$	H-atom parameters co
S = 1.03	$\Delta \rho_{\rm max} = 1.08 \text{ e} \text{ Å}^{-3}$
2110 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$
155 parameters	

Table 1

Selected geometric parameters (Å, °).

Ag1-N4 ⁱ	2.2741 (17)	O2-Ag1 ⁱⁱⁱ	2.450 (3)
Ag1-N2	2.280 (2)	O3-N1	1.233 (3)
Ag1-O2 ⁱⁱ	2.450 (3)	O2'-N1	1.246 (5)
Ag1-O1	2.4726 (18)	O3'-N1	1.211 (5)
Ag1-O2'ii	2.531 (5)	O4-N2	1.414 (2)
Ag1-Ag1 ⁱ	2.8695 (5)	N2-C1	1.289 (3)
01-N1	1.223 (2)	N3-C1	1.325 (3)
O2-N1	1.223 (4)		
N4 ⁱ -Ag1-N2	135.92 (7)	O2 ⁱⁱ -Ag1-O1	87.87 (9)
N4 ⁱ -Ag1-O2 ⁱⁱ	99.20 (8)	O2 ⁱⁱ -Ag1-Ag1 ⁱ	158.63 (9)
N2-Ag1-O2 ⁱⁱ	101.94 (9)	N1-O1-Ag1	135.09 (14)
N4 ⁱ -Ag1-O1	129.56 (7)	N1-O2-Ag1 ⁱⁱⁱ	126.18 (18)
N2-Ag1-O1	89.61 (7)	O4-N2-Ag1	121.30 (14)

 $-z + \frac{1}{2}$.

Table 2	
Hydrogen-bond and short-contact geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O4−H4A···O3	0.82	1.91	2.726 (4)	178
$O4-H4A\cdots O3'$	0.82	2.26	3.061 (10)	166
N3-H3A···O3 ^{iv}	0.86	2.35	3.161 (3)	157
$N3-H3B\cdotsO1^{v}$	0.86	2.27	3.085 (3)	158
$C3-H3\cdots O2^{v}$	0.93	2.57	3.274 (4)	133
$C3-H3\cdots O2'^{v}$	0.93	2.51	3.284 (5)	141

Symmetry codes: (iv) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$; (v) $x, -y + 1, z + \frac{1}{2}$.

H atoms were positioned geometrically and allowed for as riding atoms [C-H = 0.93 Å, N-H = 0.86 Å and O-H = 0.82 Å, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$]. Atoms O2 and O3 of the nitrate anion are disordered; the occupancies of the two sets of atom sites were initially refined and then fixed at the refined values 0.62 and 0.38. Restraints were applied to keep the NO₃ atoms in each orientation coplanar.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China (grant No. 20671055).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3152). Services for accessing these data are described at the back of the journal.

References

Aakeröy, C. B., Beatty, A. M. & Leinen, D. S. (1998). J. Am. Chem. Soc. 120, 7383-7384

Bernasek, E. (1957). J. Org. Chem. 22, 1263.

Bruker (2000). *SMART* (Version 5.6) and *SAINT* (Version 5.6), and *SADABS* (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.

Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-190.

- Milios, C. J., Stamatatos, T. C. & Perlepes, S. P. (2006). Polyhedron, 25, 134– 194.
- Näsäkkälä, M., Saarinen, H., Korvenranta, J. & Orama, M. (1989). Acta Cryst. C45, 1514–1517.
- Orama, M. & Saarinen, H. (1996). Acta Chem. Scand. 50, 1087-1091.
- Pearse, G. A., Raithby, P. R., Hay, C. M. & Lewis, J. (1989). *Polyhedron*, **8**, 305–310.
- Pearse, G. A., Raithby, P. R. & Lewis, J. (1989). Polyhedron, 8, 301-304.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin. USA.
- Werner, M., Berner, J. & Jones, P. G. (1996). Acta Cryst. C52, 72-74.